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Scheme 1. Possible Structures for Complex 2 (a) and for CAT and 
HRP Compounds I (b) 

(a) Cl" Fe1^zY C l - F e - Y * Cl-Fe"'«-Y Fe for i ron porphyrin, 

$:) L—>FeV—0 L—> Fe—O' L—> Fe <-0l Impossible endogenous 
J I I axia l ligand from the 

p ro te in 

plexes12 (Scheme I) which should depend upon the nature of 
Y, the porphyrin,14 the possible second axial ligand of iron, and 
the heme environment. 
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Reactions of Butane and Isobutane Catalyzed 
by Zirconium Oxide Treated with Sulfate Ion. 
Solid Superacid Catalyst1 

Sir: 

The synthesis of solid superacids as catalysts has been de­
sired because of many advantages of solid catalyst. We have 
succeeded in synthesizing a solid superacid, not containing any 
halogen, which can be used at the high temperature up to 500 
0 C. 

In the previous paper,2 we reported that remarkable in­
creases in the surface acidity and in the catalytic activity of 
Fe2C^ were caused by treatment with sulfate ion, followed by 
calcination, of Fe(OH)3 or Fe203 prior to the crystallization. 
This preparation method of catalyst was applied to other metal 
oxides,3 and zirconium oxide was found to show the exceed­
ingly high surface acidity, much higher than that of SiO2-
AI2O3 which is well known as one of the solid acid catalysts 
with the highest surface acidity.4 In the present work, we 
studied the catalytic action for reactions of saturated hydro­
carbons which are generally catalyzed by strong acid, espe­
cially superacid such as SbFj -HF and SbF5-FSC^H,5 and 
found that the sulfate-treated zirconium oxide is catalytically 
active for the reactions of butane and isobutane, even at room 
temperature. 

The catalyst was prepared as follows. Zr(OH)46 was ob­
tained by hydrolyzing ZrOCl2-8H20 with aqueous ammonium 
hydroxide, washing the precipitates, and drying them at 100 
0 C for 24 h. The treatment of catalyst with sulfate ion was 
performed by pouring 30 mL of 1 N H2SO4

7 into 2 g of the 
dried hydroxides on a filter paper. After drying, the materials 
were powdered below 100 mesh, calcined in a Pyrex tube in air 
at 500 0 C for 3 h, and finally sealed in an ampule until use. 

The catalyst prepared in the present manner8 showed ac­
tivity for the skeletal isomerization of butane at room tem­
perature. When the reaction was carried out in a recirculation 
reactor having a volume of ~170 mL, 0.8 g of the catalyst and 
1OmL (NTP) of butane being used, isobutane was produced 
in 7% yield for 48 h and 18% yield for 120 h. 

Since the present catalyst is calcined at 500 0 C, 9 and hence 
can be used up to 500 0 C for reaction, the reaction was carried 
out at high temperature under the pulse reaction conditions, 
where the contact period is quite short. The reaction was car­
ried out in a microcatalytic pulse reactor using a stainless tube 
with a fixed bed catalyst (flow rate of He for carrier gas, 3 
mL/min; catalyst amount, 0.3 g; pulse size, 0.04 mL). The 
catalyst was held in place by a glass wool plug and heat treated 
at 400 0 C for 1.5 h in the He flow before reaction. Gaseous 
reactants were introduced via a syringe pump and passed 
through the catalyst bed. Effluent products were directly in­
troduced into a gas chromatographic column for analysis 
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Figure 1. Reaction of butane: reaction temperatures. 100 (O), 120 ( • ) , 
150 (A), 250 0C (A); yield of propane, A (35%), B (13%), C (5%), D (4%), 
A' (34%). B' (10%), C (4%), D' (3%); isobutane only for the reactions at 
100, 1 20, and 1 50 0C. — : reaction over the S02-treated catalyst, which 
was prepared by exposing Zr(OH)4 toSC>2 for 10 min at room temperature 
and then calcining at 500 0C for 3 h. 
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Figure 2. Reaction of isobutane: reaction temperature, 120 (O), 150 ( • ) , 
230 0C (A); yield of propane, A (33%), B (13%), C(8%), D (5%), A' (3%), 
B' (2%), C and D'(trace); butane only for the reaction at 120 0C. 

(tricresyl phosphate, 5 m, at room temperature). The percent 
conversion of reactants into products was obtained by esti­
mating peak areas (corrected). 

The conversions at various temperatures are shown as a 
function of pulse number in Figure 1. The catalyst showed 
activity at the reaction temperature of 100 0C, and the product 
was isobutane at 100, 120, and 150 0C of reaction. At 250 0C, 
propane was also produced in addition to isobutane.10'11 It is 
of interest that the treatment with SO2 also enhanced the ac­
tivity to the same extent as that with sulfuric acid.12 

In Figure 2 are shown the reaction courses of isobutane at 
various temperatures. The product was butane at 120 0C and 
butane and propane at 150 and 230 0C. It is seen from Figures 
1 and 2 that the catalyst kept its activity almost constant during 
reaction at below 150 0C.'3 The continual loss of activity at 
230 and 250 0C results from decrease of propane formed, the 
catalytic activity for the skeletal isomerization being constant. 
The active sites for formation of propane were probably poi­
soned at high temperatures of reaction, since the catalysts were 
colored, yellow, after reaction. 

The SiCh-AhO3 catalysts14 were totally inactive even at 
temperature of 350 °C for both butane and isobutane. Acid 
strengths of S1O2-AI2O3 used were in the range of — 12.70 < 
Ho ^ — 11.35.'5 Consequently, the present catalyst is consid­
ered to have a surface acidity higher than Ho = — 12.70. Since 
the acid stronger than Ho = —10.6, which corresponds to the 
acid strength of 100% H2SO4, is known as superacid,16 the 
present catalyst would be a solid superacid.17 

The acid strength of the catalyst was examined by the visual 

color change method of the Hammett indicators,4 where in­
dicator dissolved in solvent is added to the sample in powder 
form placed in nonpolar solvent, but the present catalyst (white 
color) was immediately colored in organic solvents, benzene, 
toluene, hexane, carbon tetrachloride, etc. However, sulfuryl 
chloride was found to be quite suitable solvent for the acid 
strength determination of this superacid catalyst.18 In this 
manner, the catalyst changed distinctly the basic form (col­
orless) of p-nitrochlorobenzene (pAfa = —12.70), w-nitro-
chlorobenzene (—13.16), and 2,4-dinitrotoluene ( — 13.75) to 
the conjugate acid form (yellow) and slightly the color of 
2,4-dinitrofluorobenzene (—14.52), but did not change the 
color of 1,3,5-trinitrobenzene (—16.04). Thus, the acid strength 
of the present catalyst is estimated to be —14.52 < Ho-19 

Attempts to support SbFs or TaFs on AI2O3, SiC>2, and 
graphite20 have been made for the synthesis of solid superacids, 
but their acid strengths were not measured. The present cat­
alyst is the strongest surface-acid system known. 
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On the Use of Tetraphenyiborate as 
a Phase Transfer Agent for Acid Catalysis 

Sir: 

Phase transfer catalysis has proven a remarkably versatile 
technique for facilitation of reactions involving anions.1 A 
recent communication on catalysis by sodium tetraphenyibo­
rate for the acid hydrolysis of an ester suggested the potential 
extension of the phase transfer approach to reactions involving 
cations.2 We report here, however, that this intriguing potential 
remains to be demonstrated, for the initial observations are 
attributable to decomposition of the tetraphenyiborate rather 
than hydrolysis of an ester. 

1 n the previous study2 the hydrolysis of p-nitrophenyl acetate 
was followed spectrophotometrically at 865 nm. In a two-phase 
cyclohexane-HCl (1.5 N) system no reaction was observed in 
48 h at 25 0 C in the absence of sodium tetraphenyiborate, but 
with added NaBPfu a rapid color change occurs which was 
attributed to the hydrolysis of p-nitrophenyl acetate. Our at­
tempts to extend this result, however, led quickly to the ob­
servation that the same color is produced at the same rate with 
or without thep-nitrophenyl acetate present. 

To a stirred solution of 222 mg of p-nitrophenyl acetate in 
25 mLofcyclohexane was added 25 mLof 1.5 N HCl and 346 
mg of sodium tetraphenyiborate. A yellow orange color ap­
peared within 30 s which reached maximum intensity in 3 min. 
In the control reaction containing no/5-nitrophenyl acetate, 
the color change was identical. The UV-visible spectrum 
(Bcckman Acta M-VI) of the control reaction showed a broad 
maximum at 408 nm; the sum of this spectrum with that of 
pure p-nitrophenyl acetate in cyclohexane reproduced ident­
ically the spectrum of the assumed hydrolysis reaction. The 
reactions with and without p-nitrophenyl acetate also showed 
no differences at 865 nm (Spectronic 20). 

To confirm the stability ofp-nitrophenyl acetate, the reac­
tion was repeated on a slightly larger scale. The organic phase 
was separated After 15 min, washed with dilute bicarbonate, 
and evaporated to constant weight at high vacuum. From an 
initial 546 mg of /7-nitrophenyl acetate was obtained 658 mg 
of a gummy solid which integrated for 80%/7-nitrophenyl ac­
etate by NMR.3 The amount of crude/7-nitrophenyl acetate 
is thus ~96%; crystallization from cyclohexane gave an isolated 
recovery of 445 mg (81.5%). 

The instability of tetraphenyiborate to acid is well estab­
lished. 4-5 Our results indicate that acid decomposition of te­
traphenyiborate is significantly faster than hydrolysis of p-
nitrophenyl acetate. The utility of tetraphenyiborate as a 
proton phase transfer agent would thus appear limited; those 
substrates reactive enough to compete with the decomposition 
of tetraphenyiborate are likely to be easily reacted by other 
means.6 
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Elucidation of Chemical Exchange Networks 
by Two-Dimensional NMR Spectroscopy: 
The Heptamethylbenzenonium Ion 

Sir: 

For the investigation of chemical exchange processes, nu­
clear magnetic resonance (NMR) has proved to be a powerful 
and versatile technique. Much of the present detailed knowl­
edge on chemical and biological rate processes is due to NMR 
investigations.1'2 Exchange processes have been studied by 
three types of techniques: (a) line-shape analysis,1 '5 (b) spin 
echo experiments,6 and (c) saturation transfer studies.7-10 

These techniques, in particular (a) and (b), do not always lead 
to an intuitive grasp of the exchange network because the re­
sults are obtained through a computer least-squares fit. 

We demonstrate in this letter a novel technique, recently 
proposed by Jeener," - 1 3 which is based on the concept of 
two-dimensional (2D) spectroscopy.14-15 It leads to a partic­
ularly vivid representation of the exchange network ideally 
suited for a qualitative analysis of exchange networks by in­
spection. 

We select as an example the well-investigated rearrange­
ment of heptamethylbenzenonium ion.16^18 This ion undergoes 
an alkide shift which makes all seven methyl groups equivalent 
at sufficiently high temperature: 

There has been some discussion whether this shift is intra­
molecular involving either a 1 -2 shift or a random shift with 
jumps, between all possible positions, or whether it is inter-
molecular. NMR line-shape analysis16 indicated in agreement 
with many further systems of similar structure2 that the dy­
namics is governed by an intramolecular 1-2 methyl shift. 
Although the least-squares fit gives an unambiguous result, 
the visual evidence for this conclusion is just a slight line dis­
tortion for intermediate exchange rates.'6 The mechanism has 
been verified also by a saturatiorf transfer study.18 

A two-dimensional exchange spectrum of heptamethyl­
benzenonium ion is shown in Figure 1. It can be interpreted as 
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